Configuration Management Series Part 1 of 3: Ansible

This is the first of a three-part series that I am doing regarding reviewing 3 major configuration management tools: Ansible, Chef, and Puppet.

You may have seen that I have written here about Puppet before – indeed, it is the configuration management tool that I have the most experience with and probably the one that I will be sticking with personally (famous last words :p). However, I think that it’s always in an engineer’s best interest to be able to understand, support, and thrive with technologies other than the ones that he or she may personally favour as part of their own toolkit – that is what teamwork is built on, after all. So with that, take the opinions in these next few articles with a grain of Salt (which, incidentally, is the name of another tool that I will not be reviewing at this point in time, heh). I hope that you can value my opinion while still understanding that is it subjective, and your experience will vary. Honestly, I think that all 3 of these tools have value, and in the hands of competent engineers, you would be hard-pressed to find shortcomings in any of them.

One other note: I have removed the ratings from this article and the future articles will not have them either. I thought it was a good idea at first, but as time went on, and my experience with the tools increase, they seem more and more pretentious and quite misinformed.

Now that I have that disclaimer out of the way, let’s get started shall we?

As mentioned in the first part of this series, we are covering Ansible.

About Ansible

A long time ago in a technology scene not so far away (but definitely quite different than the landscape today, I used to work at NetNation (you may now know them as Hostway Canada). On our management station we had a very simple shell script that performed a very valuable task: batch administration of our shared hosting server farm over SSH.

It has now been nearly 10 years since I left Hostway, yet some concepts never die, they just get better. Ridiculously better. Magnitudes of evolution better.

Maybe about 5 or so years ago now I actually wrote a better version of this script in Python – doing some research I fond a very nifty SSH library called Paramiko ( and added a few things to make the experience better: namely, the ability to upload files and run shell scripts on the remote machine.

Admittedly, I haven’t really looked into Ansible recently, but imagine my surprise to find out that someone has basically taken that concept and made it leaps and bounds more awesome.

Ansible is basically this concept on – even though I loathe to use this analogy – steroids. Its main command transport is SSH, and does not require an agent on managed nodes to run. It allows for complex configuration management thru a YAML-based pseudo-DSL, one-off command execution, file upload, and also remote execution of complete shell scripts. A very powerful swiss-army knife for both one-off and ongoing configuration management.


Installation of Ansible is probably the most minimal out of the three that we will be covering. The three major methods are either: 1) git repo (, 2) package, or 3) pip.

With either method you may notice something that you may not be used to if you have used a more traditional configuration management tool such as Chef or Puppet: no management server.

This is almost true. Ansible nodes normally do not use a check-in method to get their configuration data, rather it is pushed out to various nodes, so there is no need for a server with this capability. Nonetheless, there is a central configuration structure that can be found in a directory such as /etc/ansible and needs to be edited accordingly. More on that in brief later.

You can find the installation guide at

Windows Support

This was going to detail the support of both major operating systems, but I felt the need to mention Linux support was redundant, as all 3 were obviously built to manage Linux first.

Ansible was written with Linux and other open source server systems in mind. With that said, they have had made a very recent push to supporting Windows, and it is looking pretty promising. Going with their agentless model again, they have decided to use WinRM instead. Some of the Windows specific features look amazing as well and definitely on par with something like Puppet.

Check out the Windows section at The list of Windows-specific modules can be found at


Since Ansible does not rely on agents, there is no real host discovery in the sense that hosts would be checking in with your management sever. From what I’ve seen, there is not even any real language to refer to the “master” server.

Inventory is managed in /etc/ansible/hosts in a pretty simple configuration file that is hard to mess up. Here is my sample hosts file:

# Our lab webserver

# Our lab database server

Hosts can be referred to by IP address, hostname, and can be further abstracted with aliases. They can also be grouped together using primitive expressions if your hosts all follow a certain convention. Various plugins exist to gather inventory dynamically too – see

The only thing that I really see missing here is some native sort of host registration and grouping. This may not be something that, by design, would be Ansible’s domain though, considering it’s push-based architecture. Also, depending on the environment you are using it in, this may be something that you can handle with dynamic inventory.

Best practice for storing host parameters (variables) actually follows very closely with how Puppet handles things with Hiera. See here: and you will see that data is generally stored in YAML files in a very similar fashion. There is also Ansible Vault: which allows for the storage of encrypted data.

There is also an enterprise console, of course. Check out Ansible tower here:

Execution Model

Several options exist for you to use with Ansible’s powerful command-line structure. The ansible command line tool can be used to execute one-off commands, module runs, and even push shell scripts and files over to remote nodes. And since it’s all intended to be run over SSH via standard user accounts, existing access control schemes can be extended to configuration management as well.

Even though I don’t believe it’s a strength of the tool, there is a pull option available as well via ansible-pull


My opinion here might be a bit polarizing or just completely out there, but I have not had the best experience writing for Ansible so far, although mind you I have only been doing it for an evening, and obviously still have a lot to learn.

Modules are actually bit more of an advanced topic, with Playbooks taking the place of general modules like you would be used to in Puppet, or cookbooks in Chef. These are collections of YAML files that dictate orchestration and management of configuration files. Playbook documentation can be found at

Templating for Playbooks is done using jinja2 – a powerful template language written for Python. You can find the template reference at Ansible also extends this a bit and its worth reading to find out how.

Unfortunately, this is where I got a little hung up on a learning curve. My impressions were:

  • The YAML structure for Playbooks was open to a bit of interpretation, and the ambiguity of it was throwing me off at points. I found that I was trying to figure out the best way to nest, if I should be at all, how much code to recycle, etc. Ironically, there seems to be several ways to do it, which kind of flies in the face of one of the core philosophies of what Ansible is written in, Python (see
  • I hit a straight up wall when I found out that jinja2 does not have a split filter – you need to write one of your own. An easy task in Python, but annoying nonetheless.

Lastly, when it comes to config management, I prefer to not have to write any of my own modules if I can help it. Unfortunately, briefly looking at Ansible Galaxy left me unfulfilled. Standard modules that I was used to having in Puppet, such as mainline designed modules like Apache and MySQL, were not up to par or were just flat out missing. Other highly-rated modules that purported to do one thing did others (ie: one Apache module was trying to manage SSH keys as well). Several user accounts (even one named “ihateansible”) exist with zero contributions. I hate to say it but my at least first impression is that there are some quality control issues here.


  • Strengths:
    • Agentless push-style management
    • Powerful inventory management
  • Weaknesses
    • Core programmability features will take some getting used to if you are coming from Chef/Puppet.
    • Ansible Galaxy possibly has some quality control issues.

Ansible is great, no doubt about that. It has taken a tried and reliable concept and turned it into something so much more than I could have imagined.

Installation is dead simple, and hence it excels in environments that need to stand up some sort of configuration management fast and with as little impact to existing infrastructure as possible. Its simple yet powerful approach to host management compliments this process even more.

Windows support is now available and looks very promising, and personally I am impressed on how fast they have been able to stand this side of it up.

Programmability could be worked on a bit, but again this could be my inexperience talking. At the very least, I would prefer to see more mainline created and managed Playbooks, which would then raise the overall quality of the modules seen on Galaxy.

Stay tuned for part 2: Chef, either later this week or on next Sunday. There will probably be another article or two regarding Ansible as well before we wrap up!


One thought on “Configuration Management Series Part 1 of 3: Ansible

Comments are closed.